Medical News Observer

Keep updated with latest medical research news

Virtual clinical trials use mathematical modelling to predict melanoma response

Researchers from Moffitt Cancer Center’s Integrated Mathematical Oncology (IMO) Department are overcoming the limitations of common preclinical experiments and clinical trials by studying cancer through mathematical modeling. A study led by Alexander “Sandy” Anderson, Ph.D., chair of IMO, and Eunjung Kim, Ph.D., an applied research scientist, shows how mathematical modeling can accurately predict patient responses to cancer drugs in a virtual clinical trial. This study was recently published in the November issue of the European Journal of Cancer.

Cancer is a complicated process based on evolutionary principals and develops as a result of changes in both tumor cells and the surrounding tumor environment. Similar to how animals can change and adapt to their surroundings, tumor cells can also change and adapt to their surroundings and to cancer treatments. Those tumor cells that adapt to their environment or treatment will survive, while tumor cells that are unable to adapt will die.

Preclinical studies with tumor cell models cannot accurately measure these changes and adaptations in a context that accurately reflects what occurs in patients. “Purely experimental approaches are unpractical given the complexity of interactions and timescales involved in cancer. Mathematical modeling can capture the fine mechanistic details of a process and integrate these components to extract fundamental behaviors of cells and between cells and their environment,” said Anderson.

The research team wanted to demonstrate the power of mathematical modeling by developing a model that predicts the responses of melanoma to different drug treatments: no treatment, chemotherapy alone, AKT inhibitors, and AKT inhibitors plus chemotherapy in sequence and in combination. They then tested the model predictions in laboratory experiments with Keiran Smalley, Ph.D., director of the Donald A. Adam Comprehensive Melanoma and Skin Cancer Research Center of Excellence at Moffitt, to confirm that their model was accurate.

To determine the long-term outcome of therapy in different patients, the researchers developed a virtual clinical trial that tested different combinations of AKT inhibitors and chemotherapy in virtual patients. The researchers show that this Phase i trial (i for in silico, and representing the imaginary number) or virtual clinical trial was able to reproduce patient responses to those observed in the published results of an actual clinical trial. Importantly, their approach was able to stratify patient responses and predict a better treatment schedule for AKT inhibitors in melanoma patients that improves patient outcomes and reduces toxicities.

“By using a range of mathematical modeling approaches targeted at specific types of cancer, Moffitt’s IMO Department is aiding in the development and testing of new treatment strategies, as well as facilitating a deeper understanding of why they fail. This multi-model, multi-scale approach has led to a diverse and rich interdisciplinary environment within our institution, one that is creating many novel approaches for the treatment and understanding cancer,” Anderson said.

Citation: Kim, Eunjung, Vito W. Rebecca, Keiran SM Smalley, and Alexander RA Anderson. “Phase i trials in melanoma: A framework to translate preclinical findings to the clinic.” bioRxiv (2015): 015925. European journal of cancer 2016 vol: 67 pp: 213-222.
DOI: http://dx.doi.org/10.1016/j.ejca.2016.07.024
Adapted from press release by Moffitt Cancer Center

Related posts

Discover more from Medical News Observer

Subscribe now to keep reading and get access to the full archive.

Continue reading