Medical News Observer

Keep updated with latest medical research news

Computational model uncovers progression of HIV infection in brain

University of Alberta research team successfully uncovered the progression of HIV infection in the brain using a new mathematical model. The team is utilizing this model to develop a nasal spray to administer  antiretroviral medication effectively. Their research is published in Journal of Neurovirology.

Research was done by PhD student Weston Roda and Prof. Michael Li. They used data from patients who died five to 15 years after they were infected, as well as known biological processes for the HIV virus to build the model that predicts the growth and progression of HIV in the brain, from the moment of infection onward. It is the first model of an infectious disease in the brain.

“The nature of the HIV virus allows it to travel across the blood-brain barrier in infected macrophage–or white blood cell–as early as two weeks after infection. Antiretroviral drugs, the therapy of choice for HIV, cannot enter the brain so easily,” said Roda. This creates what is known as a viral reservoir, a place in the body where the virus can lay dormant and is relatively inaccessible to drugs.

Prior to this study, scientists could only study brain infection at autopsy. The new model allows scientists to backtrack, seeing the progression and development of HIV infection in the brain. Using this information, researchers can determine what level of effectiveness is needed for antiretroviral therapy in the brain to decrease active infection.

“The more we understand and can target treatment toward viral reservoirs, the closer we get to developing total suppression strategies for HIV infection,” said Roda. A research team led by Chris Power, Roda’s co-supervisor who is a professor in the Division of Neurology, is planning clinical trials for a nasal spray that would get the drugs into the brain faster, with critical information on dosage and improvement rate provided by Roda’s model.

“Our next steps are to understand other viral reservoirs, like the gut, and develop models similar to this one, as well as understand latently infected cell populations in the brain,” said Roda. “With the antiretroviral therapy, infected cells can go into a latent stage. The idea is to determine the size of the latently infected population so that clinicians can develop treatment strategies”

Citation: Roda, Weston C., Michael Y. Li, Michael S. Akinwumi, Eugene L. Asahchop, Benjamin B. Gelman, Kenneth W. Witwer, and Christopher Power. “Modeling brain lentiviral infections during antiretroviral therapy in AIDS.” Journal of NeuroVirology, 2017.
doi:10.1007/s13365-017-0530-3.
Adapted from press release by University of Alberta.

Published by

Tags

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: