New microfluidic system using artificial membrane keep brain tissue viable for a longer duration

Researchers at the RIKEN Center for Biosystems Dynamics Research in Japan have developed a new system for keeping tissue viable for long-term study once transferred from an animal to a culture medium. The new system uses a microfluidic device made of polydimethylsiloxane (PDMS) with a porous membrane that can keep tissue from both drying out and from drowning in fluid. This study was published in the journal Analytical Sciences.

The team tested the device using tissue from the mouse suprachiasmatic nucleus, a complex part of the brain that governs circadian rhythms. By measuring the level of bioluminescence coming from the brain tissue, they were able to see that tissue kept alive by their system stayed active and functional for over 25 days with nice circadian activity. In contrast, neural activity in tissue kept in a conventional culture decreased by 6% after only 10 hours.

This new method will be useful in observing development and testing how tissues respond to drugs. Experiments with tissues are much more complex and provide important information such as cell to cell interaction, unlike seeded cells where such observation is difficult.