Machine learning algorithm to predict mortality in heart failure patients

Researchers from the University of California San Diego developed a machine-learning model by training a boosted decision tree algorithm on de-identified electronic health records data of 5,822 hospitalized or ambulatory patients with heart failure from the University of California San Diego.

This machine learning model is based on eight readily available variables. These include, diastolic blood pressure, creatinine, blood urea nitrogen, haemoglobin, white blood cell count, platelets, albumin, and red blood cell distribution width. This model was able to predict life expectancy in 88% of the patients.

This study is published in the European Journal of Heart Failure.

The tool was additionally tested using data from the University of California, San Francisco, and a database derived from 11 European medical centers.

With the advance of machine learning and artificial intelligence tools, large amounts of health data thanks to electronic health records, and computing power, we able to work on creating more and more accurate risk prediction tools. These tools will be commonplace in clinical practice to help with data-based decisions.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s