New tissue-engineered platform for islet cell transplantation found effective in type 1 diabetic patients

Researchers from the Diabetes Research Institute (DRI) have produced the clinical results demonstrating that pancreatic islet cells transplanted within a tissue-engineered platform can achieve insulin independence in type 1 diabetes. The research findings are published in the New England Journal of Medicine.

Islet cell transplantation omentum minipancreas
Fluorescence microscopy of islets in the omentum transplanted within the biologic scaffold. In red (insulin staining) and blue (DAPI nuclear staining). Credit: Diabetes Research Institute/University of Miami Miller School of Medicine

Islet transplantation is an emerging technology. It has demonstrated the ability to restore natural insulin production and eliminate severe hypoglycemia in people with type 1 diabetes. Traditionally the cells are transplanted into the liver, however, this site poses some limitations so researchers used omentum.

This was the first successful tissue-engineered islet transplantation that has achieved long-term insulin independence in a patient with type 1 diabetes. The biological platform was made by combining donor islets with the patient’s own (autologous) blood plasma, which was laparoscopically layered onto the omentum. Clinical-grade thrombin was then layered over the islet/plasma mixture. The technique has been designed to minimize the inflammatory reaction that is normally observed when islets are implanted in the liver or in other sites with immediate contact to blood.

“The results thus far have shown that the omentum appears to be a viable site for islet implantation using this new platform technique,” said lead author David Baidal, M.D., Assistant Professor of Medicine and member of the DRI’s Clinical Cell Transplant team. “Data from our study and long-term follow-up of additional omental islet transplants will determine the safety and feasibility of this strategy of islet transplantation, but we are quite excited about what we are seeing now.”

Citation: Baidal, David A., Camillo Ricordi, Dora M. Berman, Ana Alvarez, Nathalia Padilla, Gaetano Ciancio, Elina Linetsky, Antonello Pileggi, and Rodolfo Alejandro. “Bioengineering of an Intraabdominal Endocrine Pancreas.” New England Journal of Medicine 376, no. 19 (2017): 1887-889. doi:10.1056/nejmc1613959.
Research funding: Diabetes Research Institute Foundation, JDRF, The Leona M. and Harry B. Helmsley Charitable Trust, National Institutes of Health, University of Miami.
Adapted from press release by Diabetes Research Institute (DRI) at the University of Miami Miller School of Medicine.

Transplantation with induced neural stem cells (iNSC) improves stroke recovery in mice

In a study to determine whether induced neural stem cells (iNSCs), a type of somatic cell directly differentiated into neural stem cells, could exert therapeutic effects when transplanted into mice modeled with ischemic stroke, researchers found that the cells promoted survival and functional recovery. Additionally, they discovered that when administered during the acute phase of stroke, iNSCs protected the brain from ischemia-related damage.

In contrast to other studies that have induced somatic cells to become pluripotent stem cells (iPSCs), which can then be differentiated into neural cells, this study directly converted somatic cells into neural stem cells. Researchers concluded that in addition to iNSC transplantation improving survival rate, results also demonstrated reduced infarct volume in the brain and enhanced sensorimotor function in the mice modeled with stroke. The study will be published in a future issue of Cell Transplantation.

“We observed multiple therapeutic effects when using these cells to treat stroke in mice,” said Dr. Koji Abe, Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science. “The iNSCs did not produce any adverse responses in the animals, including tumor formation, which may suggest they are safer than regular iPSCs. Further studies are needed to confirm this cell type as a candidate for cell replacement therapy for stroke.”

“Use of iNSCs may improve the efficacy of cell transplantation procedures for stroke since they are able to be derived directly from other cells without the need for extra steps,” said Dr. Shinn-Zong (John) Lin, Tzu Chi Hospital, Hualien City, Taiwan. “This is highly desirable in stroke, which has a narrow window in which the brain is most responsive to treatment. Whether the therapeutic effects produced by iNSCs are attributable to cell replacement or to secreted factors (paracrine effects), this method may be promising for treating stroke early.”

Publication: Novel therapeutic transplantation of induced neural stem cells for stroke.
DOI: http://dx.doi.org/10.3727/096368916X692988
Adapted from press release by Cell Transplantation