New strategy to reduce antibiotic resistance using an extracellular polymeric substance inhibitor

Researchers from KU Leuven in Belgium have developed a new antibacterial strategy that weakens bacteria by preventing them from cooperating. The researchers showed that blocking slime (extracellular polymeric substance) production of salmonella bacteria weakens the bacterial community, making it easier to remove.

They used a chemical, antibacterial substance 2-cyclopentenyl-5-(4-chlorophenyl)-2-aminoimidazole, a specific member of the class of 5-aryl-2-aminoimidazoles as extracellular polymeric substance (EPS) inhibitor. Researchers at KU Leuven previously reported utility of 5-aryl-2-aminoimidazoles in preventing EPS production of salmonella bacteria.

The findings of this study are published in Nature Communications.

Traditional antibiotics kill or reduce the activity of individual bacteria. Some bacteria become resistant to these antibiotics, allowing them to grow further and take over from non-resistant ones. The use of antibiotics, therefore, causes more and more bacteria to become resistant to antibiotics. Bacteria, however, also exhibit group behavior: for example, they can make a protective slime layer or biofilm that envelops their entire bacterial community. The social behavior of bacteria is an interesting new target for antibacterial therapy. Their experiments also suggested a reduction of antibiotic resistance development.

Researchers note that there are several applications possible in agriculture, industry, and even households. To this end, the researchers collaborate with experts in various applications, and with producers of animal feeds and cleaning products and disinfectants. The researchers are also investigating whether they can reproduce the phenomenon in other forms of microbial collaboration, and with other bacteria.

Contaminated tap water and cancer

Researchers from Environmental Working Group conducted a cumulative assessment of cancer risk due to carcinogenic compounds found in drinking water. They used a novel analytical framework that calculated their combined health impacts. Results of the study showed that these substances would result in more than 100,000 cancer cases nationwide. Findings of the study are published in journal Heliyon.

In this study they utilized comprehensive nationwide dataset for contaminant occurrence in community water systems in the United States. This dataset contains water quality profiles for 48,363 community water systems. The dataset does not include water quality information on private wells .

Most of the increased cancer risk is due to contamination with arsenic, disinfection byproducts and radioactive elements such as uranium and radium. Water systems with the highest risk tend to serve smaller communities and rely on groundwater. These communities often need improved infrastructure and resources to provide safe drinking water to their residents. However, large surface water systems contribute a significant share of the overall risk due to the greater population served and the consistent presence of disinfection byproducts.

This research highlights importance of much needed improvement in infrastructure to provide clean and safe drinking water.