Research shows reduced Surgical Site Infections with use of Antimicrobial Sutures

New analyses of the published clinical studies indicate that antimicrobial sutures are effective for preventing surgical site infections (SSIs), and they can result in significant cost savings. The results are published in the British Journal of Surgery.

In one analysis that included 21 randomized clinical trials, investigators found a risk of 138 surgical site infections per 1000 procedures, and the use of sutures coated with the antimicrobial triclosan reduced this by 39. Investigators noted that sufficient evidence exists for a 15 percent relative risk reduction in SSIs when triclosan-coated sutures are used.

In an economic analysis of results from 34 studies, triclosan sutures were linked with an average cost savings per surgical procedure of  91.25 pounds across all wound classes when compared with non-antimicrobial-coated sutures.

“Antimicrobial sutures ought to be included into SSI care bundles and provide a further significant saving to National Health Service (England) surgical practice,” said Prof. David Leaper, lead author of the economic analysis.

Citations:

S. W. de Jonge, J. J. Atema, J. S. Solomkin and M. A. Boermeester. Meta-analysis and trial sequential analysis of triclosan-coated sutures for the prevention of surgical-site infection. British Journal of Surgery.
DOI: 10.1002/bjs.10445

D. J. Leaper, C. E. Edmiston Jr and C. E. Holy. Meta-analysis of the potential economic impact following introduction of absorbable antimicrobial sutures. British Journal of Surgery.
DOI: 10.1002/bjs.10443

Adapted from press release by Wiley publications.

Liquid biopsy chip based on carbon nano-tubes to detect circulating cancer cells

A chip developed by mechanical engineers at Worcester Polytechnic Institute (WPI) can trap and identify metastatic cancer cells in a small amount of blood drawn from a cancer patient. The breakthrough technology uses a simple mechanical method that has been shown to be more effective in trapping cancer cells than the microfluidic approach employed in many existing devices.

A close-up of a prototype liquid biopsy. The chip is able to capture circulating tumor cells in a very small sample of blood. Etched into it are 76 individual test units, each with a small well containing antibodies for specific cancer cell surface markers attached to carbon nanotubes. Credit: Worcester Polytechnic Institute (WPI).

The WPI device uses antibodies attached to an array of carbon nanotubes at the bottom of a tiny well. Cancer cells settle to the bottom of the well, where they selectively bind to the antibodies based on their surface markers (unlike other devices, the chip can also trap tiny structures called exosomes produced by cancers cells). This “liquid biopsy,” described in journal Nanotechnology, could become the basis of a simple lab test that could quickly detect early signs of metastasis and help physicians select treatments targeted at the specific cancer cells identified.

Metastasis is the process by which a cancer can spread from one organ to other parts of the body, typically by entering the bloodstream. Different types of tumors show a preference for specific organs and tissues; circulating breast cancer cells, for example, are likely to take root in bones, lungs, and the brain. The prognosis for metastatic cancer (also called stage IV cancer) is generally poor, so a technique that could detect these circulating tumor cells before they have a chance to form new colonies of tumors at distant sites could greatly increase a patient’s survival odds.

The focus on capturing circulating tumor cells is quite new,” said Balaji Panchapakesan, associate professor of mechanical engineering at WPI and director of the Small Systems Laboratory. “It is a very difficult challenge, not unlike looking for a needle in a haystack. There are billions of red blood cells, tens of thousands of white blood cells, and, perhaps, only a small number of tumor cells floating among them. We’ve shown how those cells can be captured with high precision.”

The device developed by Panchapakesan’s team includes an array of tiny elements, each about a tenth of an inch (3 millimeters) across. Each element has a well, at the bottom of which are antibodies attached to carbon nanotubes. Each well holds a specific antibody that will bind selectively to one type of cancer cell type, based on genetic markers on its surface. By seeding elements with an assortment of antibodies, the device could be set up to capture several different cancer cells types using a single blood sample. In the lab, the researchers were able to fill a total of 170 wells using just under 0.3 fluid ounces (0.85 milliliter) of blood. Even with that small sample, they captured between one and a thousand cells per device, with a capture efficiency of between 62 and 100 percent.

The carbon nanotubes used in the device act as semiconductors. When a cancer cell binds to one of the attached antibodies, it creates an electrical signature that can be detected. These signals can be used to identify which of the elements in the array have captured cancer cells. Those individual arrays can then be removed and taken to a lab, where the captured cells can be stained and identified under a microscope. In the lab, the binding and electrical signature generation process took just a few minutes, suggesting the possibility of getting same-day results from a blood test using the chip, Panchapakesan says.

In a paper published in the journal Nanotechnology, Panchapakesan’s team, which includes graduate students Farhad Khosravi, the paper’s lead author, and researchers at the University of Louisville and Thomas Jefferson University, describe a study in which antibodies specific for two markers of metastatic breast cancer, EpCam and Her2, were attached to the carbon nanotubes in the chip. When a blood sample that had been “spiked” with cells expressing those markers was placed on the chip, the device was shown to reliably capture only the marked cells.

In addition to capturing tumor cells, Panchapakesan says the chip will also latch on to tiny structures called exosomes, which are produced by cancers cells and carry the same markers. “These highly elusive 3-nanometer structures are too small to be captured with other types of liquid biopsy devices, such as microfluidics, due to shear forces that can potentially destroy them,” he noted. “Our chip is currently the only device that can potentially capture circulating tumor cells and exosomes directly on the chip, which should increase its ability to detect metastasis. This can be important because emerging evidence suggests that tiny proteins excreted with exosomes can drive reactions that may become major barriers to effective cancer drug delivery and treatment.”

Panchapakesan said the chip developed by his team has additional advantages over other liquid biopsy devices, most of which use microfluidics to capture cancer cells. In addition to being able to capture circulating tumor cells far more efficiently than microfluidic chips (in which cells must latch onto anchored antibodies as they pass by in a stream of moving liquid), the WPI device is also highly effective in separating cancer cells from the other cells and material in the blood through differential settling.

“White blood cells, in particular, are a problem, because they are quite numerous in blood and they can be mistaken for cancer cells,” he said. “Our device uses what is called a passive leukocyte depletion strategy. Because of density differences, the cancer cells tend to settle to the bottom of the wells (and this only happens in a narrow window), where they encounter the antibodies. The remainder of the blood contents stays at the top of the wells and can simply be washed away.”

While the initial tests with the chip have focused on breast cancer, Panchapakesan says the device could be set up to detect a wide range of tumor types, and plans are already in the works for development of an advanced device as well as testing for other cancer types, including lung and pancreas cancer. He says he envisions a day when a device like his could be employed not only for regular follow ups for patients who have had cancer, but in routine cancer screening.

“Imagine going to the doctor for your yearly physical,” he said. “You have blood drawn and that one blood sample can be tested for a comprehensive array of cancer cell markers. Cancers would be caught at their earliest stage and other stages of development, and doctors would have the necessary protein or genetic information from these captured cells to customize your treatment based on the specific markers for your cancer. This would really be a way to put your health in your own hands.”

Citation: Khosravi, Farhad, Patrick J. Trainor, Christopher Lambert, Goetz Kloecker, Eric Wickstrom, Shesh N. Rai, and Balaji Panchapakesan. “Static micro-array isolation, dynamic time series classification, capture and enumeration of spiked breast cancer cells in blood: the nanotube–CTC chip.” Nanotechnology 27, no. 44 (2016): 44LT03.
DOI: 10.1088/0957-4484/27/44/44LT03
Adapted from press release by Worcester Polytechnic Institute.

Carbon nanotube based electrical immunosensor to rapidly detect troponin I during a heart attack

Heart disease is the leading cause of death for both men and women. Therefore, a fast and reliable diagnosis of heart attack is urgently needed. A study, led by Prof. Jaesung Jang (School of Mechanical and Nuclear Engineering) has developed an electrical immunosensor to detect the acute myocardial infarction, also known as a heart attack within a minute. The system works by measuring the level of cardiac troponin I (cTnI), a protein that is excreted by the heart muscle into the blood following a heart attack.

Image shown above is the core material used for the new immunosensor that detects proteins in the blood stream following a heart attack, providing results in just 1 minute. Credit: Uslan National Institute of Science and Technology

Prof. Jang states, “This new immunosensor is constructed in a different way than any other sensor.” He adds, “Owing to the new design of this immunosensor, this device is able to rapidly diagnose the level of heart attacks at the point of care.”

Using just a single droplet of blood, this immunosensor detects the target protein present in the blood serum following a heart attack and provides a result in 1 minute.

In the study, dielectrophoretic (DEP) forces have been applied to attract the target protein. The incubation time required for the detection is decreased through DEP-mediated biomarker concentration, in which the target protein is attracted to the sensing areas via electrical forces. Therefore, the dielectrophoretic concentration of cTnI reduced the incubation time required from 60 min to 1 min.

Chang-Ho Han (School of Mechanical and Nuclear Engineering), a combined masters doctoral student in Prof. Jang’s group notes, “The level of cTnI within a single droplet of blood serum is not great.” He continues, “However, we were able to attract the target protein onto the sensing areas via electrical forces, thereby greatly improving detection time and detection limit.”

According to the research team, this novel immunosensor holds considerable potential for use as a platform for sensing distinct types of proteins, along with the feasibility of miniaturization and integration for biomedical diagnosis.

The findings of the research have been published in biotechnology journal Biosensors & Bioelectronics.

Citation: Sharma, Abhinav, Chang-Ho Han, and Jaesung Jang. “Rapid electrical immunoassay of the cardiac biomarker troponin I through dielectrophoretic concentration using imbedded electrodes.” Biosensors and Bioelectronics 82 (2016): 78-84.
DOI: 10.1016/j.bios.2016.03.056
Research funding: National Research Foundation of Korea, Korean Ministry of Education, 2016 Research Fund of UNIST.
Adapted from press release by Uslan National Institute of Science and Technology.

Deep brain magnetic stimulation provides precise and reliable activation of target neurons

Massachusetts General Hospital (MGH) researchers have developed what appears to be a significant improvement in the technology behind brain implants used to activate neural circuits responsible for vision, hearing or movement. The investigators, who are also affiliated with the Boston VA Healthcare System, describe their development of tiny magnetic coils capable of selectively activating target neurons in journal Science Advances.

“Neural stimulation systems based on electrodes are currently being used to restore senses such as vision and hearing; to treat neurological disorders such as Parkinson’s disease, and for brain-computer interfaces that can give paralyzed patients the ability to communicate or move objects,” explains lead author Seung Woo Lee, PhD, of the MGH Department of Neurosurgery. “But electrode-based neural stimulation devices, especially those that target the cortex, have several significant limitations. The environment within the brain can erode a metal electrode over time, and the brain’s natural foreign-body response can lead to scarring, which can impede passage of electrical fields.”

The use of magnetic rather than electrical fields to stimulate neurons presents several advantages, including the ability to penetrate scar tissue. Since the magnetic signal can pass through the biocompatible insulating material, direct contact between neural tissue and the metal coil is eliminated, further reducing the potential for damage to the coil. But it had been believed that magnetic coils strong enough to activate neurons would be too large to be implanted within the brain’s cortex. The device developed by Lee and senior author Shelley Fried, Ph.D., of MGH Neurosurgery — in collaboration with scientists at the Palo Alto Research Center – takes advantage of the fact that the passage of electric current through a bent wire will induce a magnetic field. The novel coil they designed, while similar to the size of electrodes used for brain stimulation, was able to generate magnetic fields in excess of the thresholds required to activate neurons.

Testing these microcoils in brain tissue samples from mice revealed not only that they were capable of activating neurons but also that they did so more selectively than would be possible with metal electrodes. Electric fields most effectively activate neurons when they are oriented along the length of nerve cells, but most implantable electrodes generate fields that spread uniformly in all directions. In contrast, magnetic fields extend in specific directions, allowing selective targeting of neurons with the same orientation while simultaneously avoiding the activation of other neurons. The ability to avoid activation of passing nerve fibers prevents the spread of activation that typically occurs with electrodes, which can lead, for example, to the blurring of a visual image generated in response to stimulation of the visual cortex.

The MGH team proceeded to show that these microcoils could safely be implanted into the brains of anesthetized mice. Stimulation of coils inserted into the portion of the motor cortex that controls the animals’ whiskers resulted in whisker motion, with the direction depending on the frequency of the signal. Stimulating coils placed in the whisker sensory cortex caused whisker retraction. These experiments proved that implanted coils can be used to drive responses associated with the targeted neurons.

“Our next steps will be to continue improving coil design to reduce power and enhance selectivity, to confirm that the enhanced effectiveness of these coils will persist over time, and to determine whether stimulation of the visual cortex does elicit a visual signal,” says Fried, who is an associate professor of Neurosurgery at Harvard Medical School. “More stable long-term performance of these microcoils and the high-resolution signals produced by ever greater selectivity in neuron activation would significantly improve currently available neural prostheses and open up many new applications.”

Citation: Lee, Seung Woo,  Florian Fallegger, Bernard D. F. Casse and Shelley I. Fried. “Implantable microcoils for intracortical magnetic stimulation.” Science Advances 2016 vol: 2 (12).
DOI: 10.1126/sciadv.1600889
Research funding: Veterans Administration-Rehabilitation Research and Development Service, NIH/National Eye Institute, NIH/National Institute for Neurological Disease and Stroke, Rappaport Foundation.
Adapted from press release by Massachusetts General Hospital.

Novel bio-signal measuring electrodes to advance health diagnosis using internet of things devices

Daegu Gyeongbuk Institute of Science and Technology (DGIST) announced that Professor Kyung-in Jang’s research team from the Department of Robotics Engineering succeeded in developing bio-signal measuring electrodes that can be mounted on Internet of Things (IoT) devices through joint research with a research team led by professor John Rogers of the University of Illinois, USA.

Optical image of bio-signal measurement electrode
design developed by Professor Jang’s research team.
The electrode generates such a large force that it holds
the circular magnet located under the glass only by
attraction (gravitation) of the magnetic field.
Credit: DGIST
The bio-signal measuring electrodes developed by the research team can be easily mounted onInternet of Things (IoT) devices for health diagnosis, thus they can measure bio-signals such as brain waves and electrocardiograms without additional analysis and measurement equipment while not interfering or restricting human activities.
Conventional hydro-gel based electrodes required external analysis and measurement devices to measure bio-signals due to their pulpy gel forms, which made their attachment to and detachment from IoT devices instable. In addition, since these electrodes were wet-bonded to the skin, there have been disadvantages that the characteristics of the electrodes deteriorated or their performance decreased when the electrodes were dried in the air over a long period.
In contrast, the electrodes developed by Professor Kyung-in Jang can be easily interlocked as if they are a part of Internet of Things (IoT) devices for health diagnosis. Also, since they are composed only of polymer and metal materials, they have the advantage of there being no possibility of drying in the air.

The bio-signal measurement electrodes developed by the research team consist of a composite material in which a magnetic material is folded with a soft and adhesive polymer, with a conductive electrode material wrapped around the composite material. The conductive electrode material electrically connects the bottom surface touching the skin and the top surface touching the electrode of the Internet of Things (IoT) device.

Electrodes with this structure reacting to the magnetic field can be easily attached and detached by using the attraction that occurs between the magnet and the electrode mounted on the IoT devices. Then, through the conductive electrode materials that connect the skin and the electrode part of the IoT device, the electric signals generated on the skin can be directly transmitted to the IoT device for health diagnosis.

The research team succeeded in storing and analyzing brain waves (electroencephalogram, EEG), electrocardiograms (ECG), eye movements (electrooculogram, EOG), and limb movements and muscle contractions (electromyogram, EMG) of the wearer for a long period through an experiment in which IoT devices with the electrodes are attached to various parts of the human body.

The bio-signal measurement electrodes can measure the bioelectric signal generated from the skin without loss or noise by using the Internet of Things (IoT) platform, thus they are expected to be applicable to the medical and healthcare fields since they cannot only measure the electrical signals of the body, but also analyze various forms of bio-signals such as body temperature change, skin change, and in-body ion concentration change.

Professor Kyung-in Jang said, “We have secured the source technology that can diagnose the state of human health anytime and anywhere by combining bio-electrode technology with Internet of Things (IoT) platforms utilizing advanced high-tech composite materials. We will carry out subsequent research to make it applicable for diseases that require ongoing medical diagnosis such as diabetes, insomnia, and epilepsy, and to make it available to people in medically vulnerable areas such as remote mountainous and rural areas.”

Citation: “Ferromagnetic, Folded Electrode Composite as a Soft Interface to the Skin for Long-Term Electrophysiological Recording”. Kyung-In Jang, Han Na Jung, Jung Woo Lee, Sheng Xu, Yu Hao Liu, Yinji Ma, Jae-Woong Jeong, Young Min Song, Jeonghyun Kim, Bong Hoon Kim, Anthony Banks, Jean Won Kwak, Yiyuan Yang, Dawei Shi, Zijun Wei, Xue Feng, Ungyu Paik, Yonggang Huang, Roozbeh Ghaffari, John A. Rogers.Advanced Functional Materials 2016 vol: 26 (40) pp: 7281-7290.
DOI: 10.1002/adfm.201603146
Adapted from press release by Daegu Gyeongbuk Institute of Science and Technology (DGIST).

New technology using gold wires on flexible plastic for wearable electronic devices

Researchers from National Institute of Standards and Technology (NIST) has come up with a way to build safe, nontoxic gold wires onto flexible, thin plastic film. Their demonstration potentially clears the path for a host of wearable electronic devices that monitor our health.

NIST research has found that the flexible plastic membrane on
 which wearables would be built might work better if the
membrane had microscopic holes in it.
Credit: Reyes-Hernandez/NIST
Wearable health monitors are already commonplace; bracelet-style fitness trackers have escaped mere utility to become a full-on fashion trend. But the medical field has its eye on something more profound, known as personalized medicine. The long-term goal is to keep track of hundreds of real-time changes in our bodies, from fluctuations in the amount of potassium in sweat to the level of particular sugars or proteins in the bloodstream. These changes manifest themselves a bit differently in each person, and some of them could mark the onset of disease in ways not yet apparent to a doctor’s eye. Wearable electronics might help spot those problems early.

First, though, engineers need a way to build them so that they work dependably and safely–a tall order for the metals that make up their circuits and the flexible surfaces or “substrates” on which they are built. Gold is a good option because it does not corrode, unlike most metals, and it has the added value of being nontoxic. But it’s also brittle. If you bend it, it tends to crack, potentially breaking completely– meaning thin gold wires might stop conducting electricity after a few twists of the body.

“Gold has been used to make wires that run across plastic surfaces, but until now the plastic has needed to be fairly rigid,” said Reyes-Hernandez. “You wouldn’t want it attached to you; it would be uncomfortable.”

Reyes-Hernandez doesn’t work on wearable electronics. His field is microfluidics, the study of tiny quantities of liquid and their flow, typically through narrow, thin channels. One day he was exploring a commercially available porous polyester membrane–it feels like ordinary plastic wrap, only a lot lighter and thinner–to see if its tiny holes could make it useful for separating different fluid components. He patterned some gold electrodes onto the membrane to create a simple device that would help with separations. While sitting at his desk, he twisted the plastic a few times and noticed the electrodes, which covered numerous pores as they crisscrossed the surface, still conducted electricity. This wasn’t the case with nonporous membranes. “Apparently the pores keep the gold from cracking as dramatically as usual,” he said. “The cracks are so tiny that the gold still conducts well after bending.”

Reyes-Hernandez said the porous membrane’s electrodes show even higher conductivity than their counterparts on rigid surfaces, an unexpected benefit that he cannot explain as yet. The next steps, he said, will be to test changes in conductivity over the long term after many bends and twists, and also to build some sort of sensor out of the electrode-coated membrane to explore its real-world usability. “This thin membrane could fit into very small places,” he said, “and its flexibility and high conductivity make it a very special material, almost one of a kind.”

Citation: “Flexible Thin-Film Electrodes on Porous Polyester Membranes for Wearable Sensors”.
Aveek Gangopadhyay, Brian J. Nablo, Mulpuri V. Rao,  Darwin R. Reyes. Advanced Engineering Materials 2016.
DOI: 10.1002/adem.201600592
Adapted from press release by National Institute of Standards and Technology.

Wearable biosensor to test sweat

Researchers has developed soft, flexible microfluidic device that easily adheres to the skin and measures the wearer’s sweat to show how his or her body is responding to exercise. A little larger than a quarter and about the same thickness, the simple, low-cost device analyzes pH and concentrations of glucose, chloride and lactate.

Credit: John A Rogers, Northwestern University

“Sweat is a rich, chemical broth containing a number of important chemical compounds with physiological health information. By expanding our previously developed ‘epidermal’ electronics platform to include a complex network of microfluidic channels and storage reservoirs, we now can perform biochemical analysis of this important biofluid,” said John A. Rogers, who led the multi-institution research team that created the ‘lab on the skin.

Rogers is the Louis Simpson and Kimberly Querrey Professor of Materials Science and Engineering, Biomedical Engineering and Neurological Surgery in the McCormick School of Engineering and Northwestern University Feinberg School of Medicine.  Rogers and his longtime collaborator Yonggang Huang are pioneers in developing skin-like stretchable electronics that move naturally with the skin, and this is their first device to monitor physiological health by analyzing biofluids.

In a study of accuracy and durability, the device was tested on two different groups of athletes: one cycling indoors in a fitness center under controlled conditions and the other participating in the El Tour de Tucson, a long-distance bicycle race in arid and complex conditions. The researchers placed the device on the arms and backs of the athletes to capture sweat. Details of the versatile platform for sweat analysis were published in the journal Science Translational Medicine.

During moderate or vigorous exercise, sweat winds through the tiny microscopic channels of the device and into four different small, circular compartments. In the compartments, reactions with chemical reagents result in visible color changes in ways that quantitatively relate to pH and concentrations of glucose, chloride and lactate.  When a smartphone is brought into proximity with the device, the wireless electronics trigger an app that captures a photo of the device and analyzes the image to yield data on the biomarker concentrations.

In the group that cycled indoors, the researchers compared the new device’s biomarker readouts to conventional laboratory analysis of the same sweat and found the two sets of results agreed with each other. (Conventional methods include capturing sweat with absorbent patches taped to the skin and analyzing them off-site.)

With the long-distance cyclists, the researchers tested the durability of the device in the complex and unpredictable conditions of the desert. They found the devices to be robust: They stayed adhered to the athletes’ skin, did not leak and provided the kind of quality information the researchers sought.

Citation: “A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat”. Ahyeon Kohl, Daeshik Kang, Yeguang Xue, Seungmin Lee, Rafal M. Pielak, Jeonghyun Kim1, Taehwan Hwang, Seunghwan Min, Anthony Banks, Philippe Bastien, Megan C. Manco, Liang Wang, Kaitlyn R. Ammann, Kyung-In Jang, Phillip Won, Seungyong Han, Roozbeh Ghaffari, Ungyu Paik, Marvin J. Slepian, Guive Balooch, Yonggang Huang and John A. Rogers. Science Translational Medicine  23 Nov 2016: Vol. 8, Issue 366, pp. 366ra165
DOI: 10.1126/scitranslmed.aaf2593
Research funding: L’Oréal, Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign, National Research Foundation of Korea and National Institutes of Health.
Adapted from news release by Northwestern University.

New electrochemical biosensor system that can be used for point-of-care antibiotic testing could usher personalized antibiotic treatment

A team of researchers from the University of Freiburg has developed a system inspired by biology that can detect several different antibiotics in human blood or other fluids at the same time. This biosensor system could be used for medical diagnostics in the future, especially for point-of-care testing in doctors’ practices, on house calls and in pharmacies, as well as in environmental and food safety testing. The researchers focused their study on the antibiotics tetracycline and streptogramin in human blood.

The electrochemical biosensor system for point-of-care testing.
Photo: Andreas Weltin 

The researchers have recently published their results in Analytical Chemistry. Based on these findings, the group is currently working on developing a method to determine how quickly the human body breaks down antibiotics, thus enabling the dosage of medications to be adjusted to each patient. “This technology could pave the way for personalized antibiotic treatments in the future,” said the microsystems engineer Dr. Can Dincer, who is the head of the research team.

The all-too-frequent use of antibiotics in human and veterinary medicine causes pathogens to develop resistance. Multidrug resistant bacteria are the reason for an increasing number of life-threatening infections that are difficult to treat with medications available today. In this context, biosensors have so much potential in research, since they are inexpensive and easy to work with. It is expected that biosensors can be employed to customize antibiotic treatments to fit each patient`s requirements, thereby decreasing the development of resistant bacteria in the future.

The electrochemical biosensor platform was developed by Prof. Dr. Gerald Urban’s research group. It works with extremely small amounts of liquid. “The major advantage of this system is that we can measure up to eight different substances at the same time, quickly and simply,” Dincer said. The researchers combined their chip technology with a method developed earlier by the bioengineering expert Prof. Dr. Wilfried Weber, also from the University of Freiburg. The method is based on a naturally occurring sensor protein in resistant bacteria to recognize antibiotics and activate their defence mechanisms. These bacterial sensors react quickly, sensitively and specifically to antibiotics, which makes them ideal for analytical testing. Essentially, the bacteria are providing the researchers with a tool that can be applied to fight them back in the long-run.

Citation: Kling, André, Claire Chatelle, Lucas Armbrecht, Edvina Qelibari, Jochen Kieninger, Can Dincer, Wilfried Weber, and Gerald Urban. “Multianalyte Antibiotic Detection on an Electrochemical Microfluidic Platform.” Analytical Chemistry 88, no. 20 (2016): 10036-10043.
DOI: http://dx.doi.org/10.1021/acs.analchem.6b02294
Adapted from press release by University of Freiburg