Researchers identify biomarker for autism caused by Dup15q syndrome

Researchers at the UCLA Center for Autism Research and Treatment have identified a signature brain-wave pattern for children with autism spectrum disorder related to a genetic condition known as Dup15q syndrome. The research team noted that this signature is among the first quantitative biomarkers identified in electroencephalogram tests discovered for any syndrome highly associated with autism spectrum disorder. Dup15q syndrome a duplication of chromosome 15q11.2-q13.1 is among the most common genetic variants associated with autism disorders. The study was published in PLOS One.

In a two-stage study, the UCLA team first acquired EEG recordings from 11 children with Dup15q syndrome, along with 10 age- and IQ-matched children with autism spectrum disorder but without the Dup15q syndrome, and nine age-matched children developing in typical fashion. EEGs were quantified and statistically analyzed to determine whether beta oscillations, a characteristic EEG signature, in children with Dup15q distinguished them from the two comparison groups. The UCLA team then collected EEG data from a larger group of children at a meeting of the Dup15q Alliance, a national support and research group that the researchers worked closely with on the project.

For children with autism spectrum disorder related to Dup15q, the findings provide a potentially valuable tool for early and accurate diagnosis, development of new drugs, selection of participants for drug trials, and measurement of whether treatments are making the desired impact. There is currently no drug for curing or treating the core symptoms of autism.

Although Dup15q syndrome affects a small proportion of people with the autism spectrum, the identification of a brain-based biomarker could also serve as a bellwether for findings associated with other genetic syndromes related to autism spectrum disorder.

Citation: Frohlich, Joel, Damla Senturk, Vidya Saravanapandian, Peyman Golshani, Lawrence T. Reiter, Raman Sankar, Ronald L. Thibert, Charlotte DiStefano, Scott Huberty, Edwin H. Cook and  Shafali S. Jeste “A Quantitative Electrophysiological Biomarker of Duplication 15q11. 2-q13. 1 Syndrome.” PLoS One 11, no. 12 (2016): e0167179.
DOI: 10.1371/journal.pone.0167179
Research funding: Dup15q Alliance Clinical Research Award and UCLA Intellectual and Developmental Disabilities Research Center.
Adapted from press release by UCLA.