Anti aging drugs focus – Rapamycin

New opinion article by Dr. Mikhail V. Blagosklonny about anti aging drug published in the journal Aging.

Drug in focus is rapamycin, which functions by inhibiting mTOR pathway. Similar drugs include everolimus. Normally when over-activated by nutrients and insulin, mTOR acts via S6K to inhibit insulin signaling, thereby causing insulin resistance.

The evidence in preclinical and animal suggests that rapamycin is a universal anti-aging drug that is, it extends lifespan in all tested models from yeast to mammals, suppresses cell senescence and delays the onset of age-related diseases, which are manifestations of aging

Author lists advantages of rapamycin which include immunomodulator and anti inflammatory effects in addition to anti aging effects. Also it is know that rapamycin reduces viral replication. Some of the notable side effects include stomatitis and mucositis, non-infectious interstitial pneumonitis and nuetrophil inhibition which can lead to severe bacterial infections.

In addition to rapamycin/everolimus, other conventional drugs with anti-aging effect include metformin, aspirin, ACE inhibitors, angiotensin receptor blockers and PDE5 inhibitors such as Sildenafil and Tadalafil, can prevent or treat more than one age-related disease. In addition to above drugs calorie restriction and intermittent fasting has been shown to extend both the lifespan and healthspan in diverse species.

Researchers identify role of protein TOM-1 in Alzheimer’s disease pathology

The scientists from the University of California Irvine discovered that reducing the amount of protein TOM-1 in Alzheimer’s rodent models increased pathology, which included increased inflammation, and exacerbated cognitive problems associated with the disease and restoring TOM-1 levels reversed those effects.

This research is significant as it explores the molecular pathways underlying Alzheimer’s disease. It also provides information about the TOM-1 signaling pathway and its role in interleukin-1β mediated inflammation in the brain. This provides a new therapeutic target to treat Alzheimer’s disease

This animal study is published in Proceedings of the National Academy of Sciences.